Laser Power Transmission Employing a Dual-Use Photovoltaic Concentrator at the Receiving End, Phase II

Completed Technology Project (2004 - 2006)

Project Introduction

The proposed innovation is a wireless laser power transmission system employing a dual-use photovoltaic concentrator at the receiving end. Specifically, the laser receiver/converter employs thin stretched-membrane Fresnel lenses to focus continuous or pulsed laser light onto small photovoltaic cells, thereby reducing cell cost and improving cell conversion efficiency. The dual-use approach can be implemented in several ways, to allow the same photovoltaic concentrator array to be used as a solar array and/or a laser receiver/converter array. Specifically, the photovoltaic concentrator employs multi-junction cells for high-efficiency solar radiation conversion, and singlejunction cells for the high-efficiency laser radiation conversion. A prototype lens/cell unit was successfully tested in Phase I, and a more optimal array will be built and tested in Phase II. The new modular laser/solar photovoltaic concentrator will have many NASA, military, and commercial space applications. Applications include spacecraft arrays receiving laser input from other spacecraft or from Earth; lunar or planetary arrays receiving laser input from nearby spacecraft or from Earth; and Earth-based arrays receiving laser input from space solar power (SSP) spacecraft. The dual-use capability enables state-of-the-art solar operation when sunlight is available (e.g., illuminated orbit portion), and laser operation when sunlight is not available (e.g., eclipse orbit portion).

Primary U.S. Work Locations and Key Partners

Laser Power Transmission Employing a Dual-Use Photovoltaic Concentrator at the Receiving End, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Marshall Space Flight Center (MSFC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Laser Power Transmission Employing a Dual-Use Photovoltaic Concentrator at the Receiving End, Phase II

Completed Technology Project (2004 - 2006)

Organizations Performing Work	Role	Туре	Location
★Marshall Space Flight Center(MSFC)	Lead Organization	NASA Center	Huntsville, Alabama
ENTECH, Inc.	Supporting Organization	Industry	Keller, Texas

Primary U.S. Work Locations	
Alabama	Texas

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX03 Aerospace Power and Energy Storage
 - └─ TX03.1 Power Generation and Energy Conversion
 └─ TX03.1.1 Photovoltaic